Acta Crystallographica Section C
Crystal Structure
Communications

The trans influence in mer-tri-chloronitridobis(triphenylarsine)ruthenium(VI)

Magnus Magnussen* and Jesper Bendix

Inorganic Chemistry, Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
Correspondence e-mail: magnus@kiku.dk

Received 20 May 2003
Accepted 7 July 2003
Online 9 August 2003
The title compound, mer- $\left[\mathrm{RuCl}_{3} \mathrm{~N}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{As}\right)_{2}\right]$, is the first structurally characterized example of a nitride complex in which ruthenium is six-coordinated to monodentate ligands only. The $\mathrm{Ru} \equiv \mathrm{N}$ bond length $[1.6161$ (15) \AA] is relatively long, and the trans influence of the nitride ligand is reflected by the difference between the $\mathrm{Ru}-\mathrm{Cl}_{\text {trans }}$ and $\mathrm{Ru}-\mathrm{Cl}_{\text {cis }}$ bond lengths $\left[0.1234(4) \AA\right.$. The $\mathrm{N}-\mathrm{Ru}-\mathrm{Cl}_{\text {trans }}$ axis is sited on a twofold axis.

Comment

Ruthenium-nitride complexes have been well known since 1972 (Griffith \& Pawson, 1972). However, all of the structurally characterized $\mathrm{Ru} \equiv \mathrm{N}$ complexes with monodentate auxiliary ligands are square pyramidal and five-coordinate (Phillips \& Skapski, 1975; Collison et al., 1981; Sharpley et al., 1988; Liang \& Sharpley, 1996), which provides a qualitative indication of the strong trans influence of the nitride ligand. In order to obtain a good quantitative measure of the trans influence unperturbed by the steric requirements of polydentate ligands, we have undertaken a study of mer$\left[\mathrm{RuNCl}_{3}\left(\mathrm{AsPh}_{3}\right)_{2}\right]$, (I).

(I)

The structure of (I) consists of discrete monomers and the coordination geometry (Fig. 1 and Table 1) is distorted octahedral. The three chloride ligands are arranged in a meridional configuration in which one chloride ligand is trans to the nitride, as proposed by Pawson \& Griffith (1975).

The $\mathrm{Ru}=\mathrm{N}$ bond length of 1.6161 (15) \AA is relatively long compared with that in other ruthenium-nitride compounds and is only exceeded by the distance in bis(1,2-benzenedithiolato)nitridoruthenate(VI) $[1.613$ (5) and 1.621 (5) \AA in
two independent molecules; Sellmann et al., 1997] and in μ -oxo-tetrakis(2,5-dimethyl-2,5-hexanediamine- N, N^{\prime}) nitridodiruthenium(VI) [1.66 (1) Å; Chiu et al., 1996].

The Ru -As bond length of 2.5533 (3) \AA is the longest reported Ru -As bond length in ruthenium compounds with AsPh_{3} and related ligands. Note that arsine ligands support ruthenium in oxidation states ranging from Ru^{0} in $\left[\mathrm{Ru}\left(\mathrm{AsPh}_{3}\right)(\mathrm{CO})_{4}\right]$ (Martin et al., 1983) to $\mathrm{Ru}^{\mathrm{VI}}$ in rutheniumnitride complexes such as (I).

In five- and six-coordinate complexes with strong π-donor ligands, such as oxide and nitride, the central metal is invariably displaced out of the plane of the equatorial ligands towards the multiply bonded ligand. This phenomenon is much less pronounced in six-coordinate compounds, probably as a result of steric interactions. The $\mathrm{N}-\mathrm{Ru}-\mathrm{Cl} 1$ and $\mathrm{N}-$ Ru - As angles of 93.325 (7) and 93.59 (1) ${ }^{\circ}$ in (I) indicate that the Ru atom lies 0.1483 (2) \AA above the equatorial plane defined by the two Cl and two As atoms. This deviation is less than half the value of the out-of-plane distances seen in fivecoordinate nitride compounds, where the deviations range from $0.34 \AA$ in $\left[\mathrm{MoN}\left(\mathrm{N}_{3}\right)_{4}\right]^{-}($Dehnicke et al., 1980) to $0.768 \AA$ in $\left[\mathrm{TcN}\left(\mathrm{Se}_{2} \mathrm{C}=\mathrm{C}(\mathrm{CN})_{2}\right)\right]^{2-}$ (Abram et al., 1991). In (I), the $\mathrm{Ru}-\mathrm{Cl}_{\text {trans }}$ bond length $[2.5020$ (4) \AA] is longer than the $\mathrm{Ru}-$ $\mathrm{Cl}_{\text {cis }}$ bond length [2.3786 (3) \AA], but this trans influence is relatively small compared with that observed for other sixcoordinate nitride complexes (Table 2). This smaller influence may be a result of the small out-of-plane displacement of the Ru atom in (I), which reflects the steric bulk of the AsPh_{3} ligands and the concomitant strain involved in closing all angles involving the arsine ligands.

The closely related compound mer- $\left[\mathrm{Ru}(\mathrm{NO}) \mathrm{Cl}_{3}\left(\mathrm{AsPh}_{3}\right)_{2}\right]$ (Souza et al., 1995) is isostructual with (I). The geometric parameters of these two complexes are almost identical (Table 3), but the nitrosyl ligand does not exert any trans influence. This result is paralleled for first-row transition

Figure 1
A view of the molecular structure of (I), with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
metals by the strong trans influence found in $\left[\mathrm{Mn}(\mathrm{N})(\mathrm{CN})_{5}\right]^{3-}$ [0.253 (7) A; Bendix et al., 2000] and the absence of any trans influence in $\left[\mathrm{Mn}(\mathrm{NO})(\mathrm{CN})_{5}\right]^{3-} \quad[0.03(1) \AA$; Tullberg \& Vannerberg, 1967]. These findings reflect the general rule that, while strong π-donor ligands exert a trans influence, π-acceptors do not (Lyne \& Mingos, 1995).

Importantly, the steric demands of the AsPh_{3} ligand shield the nitride ligand in (I) from intermolecular interactions.

Figure 2
The crystal packing, showing the parallel and antiparallel $\mathrm{Ru} \equiv \mathrm{N}$ directions parallel to the b axis. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.

Accordingly, the packing (Fig. 2) is governed by the arrangement of the phenyl groups of the AsPh_{3} ligands, resulting in several relatively short intermolecular C...C distances $[3.6220(1)-3.9130(1) \AA]$. The rhombicity of the molecules is mirrored in the packing; all $\mathrm{Ru} \equiv \mathrm{N}$ vectors are parallel (or antiparallel) and all As-As vectors are parallel. The packing thus explains the strong dichroism of the solid compound and makes it a good candidate for polarized singlecrystal absorption and luminescence spectroscopy (Cowman et al., 1976; Lam et al., 1993) on an unperturbed $\mathrm{Ru} \equiv \mathrm{N}$ moiety.

Experimental

Compound (I) was prepared according to the method described by Pawson \& Griffith (1975). Crystals were grown by adding a solution of $\left(\mathrm{Bu}_{4} \mathrm{~N}\right)\left[\mathrm{RuNCl}_{4}\right]$ in methanol to a solution of excess AsPh_{3} in acetone at room temperature and allowing slow evaporation of the solvents. The crystals are markedly dichroic (red and yellow).

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{RuCl}_{3} \mathrm{~N}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{As}\right)_{2}\right]} \\
& M_{r}=833.87 \\
& \text { Monoclinic, } C 2 / c \\
& a=12.0020(4) \AA \\
& b=14.5630(9) \AA \\
& c=18.526(2) \AA \\
& \beta=92.882(5)^{\circ} \\
& V=3234.0(4) \AA^{3} \\
& Z=4
\end{aligned}
$$

Data collection

Nonius KappaCCD area-detector diffractometer
ω and φ scans
Absorption correction: Gaussian integration (Coppens, 1970)
$T_{\text {min }}=0.462, T_{\text {max }}=0.877$
55021 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022$
$w R\left(F^{2}\right)=0.052$
$S=1.09$
7120 reflections
196 parameters
H-atom parameters constrained

7120 independent reflections 6361 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.045$
$\theta_{\text {max }}=35.0^{\circ}$
$h=-19 \rightarrow 19$
$k=-23 \rightarrow 23$
$l=-29 \rightarrow 29$
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0173 P)^{2}\right.$
$+4.8314 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.62 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.93 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\AA{ }^{\circ},{ }^{\circ}$).

$\mathrm{Ru} 1-\mathrm{N} 1$	$1.6161(15)$	$\mathrm{Ru} 1-\mathrm{Cl} 1$	$2.3786(3)$
$\mathrm{Ru} 1-\mathrm{As} 1$	$2.5533(3)$	$\mathrm{Ru} 1-\mathrm{Cl} 2$	$2.5020(4)$
			$93.59(1)$
$\mathrm{N} 1-\mathrm{Ru} 1-\mathrm{Cl} 1$	$93.325(7)$	$\mathrm{N} 1-\mathrm{Ru} 1-\mathrm{As} 1$	$94.047(8)$
$\mathrm{Cl} 1-\mathrm{Ru} 1-\mathrm{Cl} 1^{\mathrm{i}}$	$173.350(15)$	$\mathrm{Cl} 1-\mathrm{Ru} 1-\mathrm{As} 1$	$86.41(1)$
$\mathrm{N} 1-\mathrm{Ru} 1-\mathrm{Cl} 2$	180.0	$\mathrm{Cl} 2-\mathrm{Ru} 1-\mathrm{As} 1$	$172.812(7)$
$\mathrm{Cl} 1-\mathrm{Ru} 1-\mathrm{Cl} 2$	$86.675(7)$	$\mathrm{As} 1-\mathrm{Ru} 1-\mathrm{As} 1^{\mathrm{i}}$	1

Symmetry code: (i) $-x, y, \frac{1}{2}-z$.

Table 2
Comparative geometric parameters $\left(\AA,{ }^{\circ}\right)$ for selected six-coordinate nitride complexes.

Complex	Average			
	$M \equiv \mathrm{~N}$	$M-X_{\text {trans }}$	$M-X_{\text {cis }}$	$\mathrm{N} \equiv M-L_{\text {eq }}$
$m e r-\left[\mathrm{RuNCl}_{3}\left(\mathrm{AsPh}_{3}\right)_{2}\right]^{a}$	1.6161 (15)	2.5020 (4)	2.3786 (3)	93.325 (7)
				-93.59 (1)
fac-[OsNCl_{3} (dpae) $]^{\text {b }}$	1.68 (2)	2.507 (5)	2.377 (5)	$\begin{aligned} & 86.5(5) \\ & -102.6(5) \end{aligned}$
$\left[\mathrm{OsNCl}_{5}\right]^{2-c}$	1.614 (13)	2.605 (4)	2.363 (4)	95.44 (6)
				-97.5 (5)
$\left[\mathrm{OsN}(\mathrm{CN})_{5}\right]^{2-d}$	1.647 (7)	2.353 (8)	2.080 (8)	$\begin{gathered} 93.3(3) \\ -99.4(3) \end{gathered}$
$\left[\operatorname{ReN}(\mathrm{NCS})_{5}\right]^{2-e}$	1.657 (12)	2.307 (12)	2.023 (8)	95.5 (4)
				-96.8 (5)
mer $-\left[\mathrm{ReNBr}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\right]^{f}$	1.667 (6)	2.795 (1)	2.587 (1)	91.0 (2)
				-103.6 (2)

Notes: (a) present work; (b) Lam et al. (1993) [dpae is bis(diphenylarsino)ethane]; (c) Bright \& Ibers (1969); (d) Che et al. (1989); (e) Carrondo et al. (1978); (f) SchmidtBrücken \& Abram (2001).

Table 3
Comparative geometric parameters $\left(\AA,{ }^{\circ}\right)$ for $m e r-\left[\operatorname{RuNCl}_{3}\left(\mathrm{AsPh}_{3}\right)_{2}\right]$ and $m e r-\left[\mathrm{Ru}(\mathrm{NO}) \mathrm{Cl}_{3}\left(\mathrm{AsPh}_{3}\right)_{2}\right]$.

	$m e r-\left[\mathrm{RuNCl}_{3}\left(\mathrm{AsPh}_{3}\right)_{2}\right]$	$m e r-\left[\mathrm{Ru}(\mathrm{NO}) \mathrm{Cl}_{3}\left(\mathrm{AsPh}_{3}\right)_{2}\right]$
$\mathrm{Ru}-\mathrm{N}$	$1.6161(15)$	$1.729(7)$
$\mathrm{Ru}-\mathrm{Cl}$	$2.3786(3)$	$2.384(1)$
$\mathrm{Ru}-\mathrm{Cl}$	$2.5020(4)$	$2.346(2)$
$\mathrm{N}-\mathrm{Ru}-\mathrm{Cl}$	$93.325(7)$	$90.0(1)$
$\mathrm{N}-\mathrm{Ru}-\mathrm{As}$	$93.59(1)$	$91.5(1)$

[^0]Data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX (Duisenberg, 1992); data reduction: EvalCCD (Duisenberg, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997) and SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976).

The authors would like to thank Flemming Hansen for collecting the data and the Center for Crystallographic Studies for the use of their equipment.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JZ1564). Services for accessing these data are described at the back of the journal.

References

Abram, U., Abram, S., Stach, J., Dietzsch, W. \& Hiller, W. (1991). Z. Naturforsch. Teil B, 46, 1183-1187.
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliadi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Bendix, J., Deeth, R. J., Weyhermüller, T., Bill, E. \& Wieghardt, K. (2000). Inorg. Chem. 39, 930-938.
Bright, D. \& Ibers, J. A. (1969). Inorg. Chem. 8, 709-716.
Carrondo, M. A. A. F. de C. T., Shakir, R. \& Skapski, A. C. (1978). J. Chem. Soc. Dalton Trans, pp. 844-848.
Che, C.-M., Lam, H.-W. \& Mak, T. C. W. (1989). J. Chem. Soc. Chem. Commun. pp. 1529-1531.
Chiu, W.-H., Gua, C.-X., Cheung, K.-K. \& Che, C.-M. (1996). Inorg. Chem. 35, 540-541.

Collison, D., Garner, D., Mabbs, F. E. \& King, T. J. (1981). J. Chem. Soc. Dalton Trans. pp. 1820-1824.
Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.
Cowman, C. D., Trogler, W. C., Mann, K. R., Poon, C. K. \& Gray, H. B. (1976). Inorg. Chem. 15, 1747-1751.
Dehnicke, K., Schmitte, J. \& Fenske, D. (1980). Z. Naturforsch. Teil B, 35, 1070-1074.
Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
Duisenberg, A. J. M. (1998). PhD thesis, University of Utrecht, The Netherlands.
Griffith, W. P. \& Pawson, D. (1972). Chem. Ind. (London), 15, 609.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Lam, H.-W., Chin, K.-F., Che, C.-M., Wang, R.-J. \& Mak, T. C. W. (1993). Inorg. Chim. Acta, 204, 133-137.
Liang, H.-C. \& Sharpley, P. A. (1996). Organometallics, 15, 1331-1333.
Lyne, P. D. \& Mingos, D. M. P. (1995). J. Chem. Soc. Dalton Trans. pp. 16351643.

Martin, L. R., Einstein, F. W. B. \& Pomeroy, R. K. (1983). Inorg. Chem. 22, 1959-1961.
Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
Pawson, D. \& Griffith, W. P. (1975). J. Chem. Soc. Dalton Trans. pp. 417423.

Phillips, F. L. \& Skapski, A. C. (1975). Acta Cryst. B31, 2667-2670.
Schmidt-Brücken, B. \& Abram, U. (2001). Z. Anorg. Allg. Chem. 627, 17141716.

Sellmann, D., Wemple, M. W., Donaubauer, W. \& Heinemann, F. W. (1997). Inorg. Chem. 36, 1397-1402.
Sharpley, P. A., Kim, H. S. \& Wilson, S. R. (1988). Organometallics, 7, 928-933.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Souza, D. M. F., Oliva, G., Teixeira, A. \& Batista, A. A. (1995). Polyhedron, 14, 1031-1034.
Tullberg, A. \& Vannerberg, N.-G. (1967). Acta Chem. Scand. 21, 1462-1472.

[^0]: H atoms were found in a difference Fourier map and were included in the refinement at idealized positions, riding on their parent atoms ($\mathrm{C}-\mathrm{H}=0.93 \AA$).

